87,341 research outputs found

    Mechanical strength and tribological behavior of ion-beam deposited boron nitride films on non-metallic substrates

    Get PDF
    An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2

    Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation

    No full text
    Visible luminescence is observed from the composite of SiO2 with embedded silicon nanocrystallites produced by femtosecond laser irradiation of hydrogenated amorphous silicon (a-Si:H) film in air. The photoluminescence originates from the defect states at the interface between silicon crystallites and SiO2 matrix. The method could be used for fabrication of luminescent layers to increase energy conversion of a-Si:H solar cells

    The Reactivity of MgB2 with Common Substrate and Electronic Materials

    Full text link
    The reactivity of MgB2 with powdered forms of common substrate and electronic materials is reported. Reaction temperatures between 600 C and 800 C, encompassing the range commonly employed in thin-film fabrication, were studied. The materials tested for reactivity were ZrO2, yttria stabilized zirconia (YSZ), MgO, Al2O3, SiO2, SrTiO3, TiN, TaN, AlN, Si, and SiC. At 600 C, MgB2 reacted only with SiO2 and Si. At 800 C, however, reactions were observed for MgB2 with Al2O3, SiO2, Si, SiC, and SrTiO3. The Tc of MgB2 decreased in the reactions with SiC and Al2O3.Comment: 5 figure

    Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation

    Get PDF
    Si nanocrystals (diameter 2–5 nm) were formed by 35 keV Si + implantation at a fluence of 6 × 1016 Si/cm2 into a 100 nm thick thermally grown SiO2 film on Si (100), followed by thermal annealing at 1100 °C for 10 min. The nanocrystals show a broad photoluminescence spectrum, peaking at 880 nm, attributed to the recombination of quantum confined excitons. Rutherford backscattering spectrometry and transmission electron microscopy show that annealing these samples in flowing O2 at 1000 °C for times up to 30 min results in oxidation of the Si nanocrystals, first close to the SiO2 film surface and later at greater depths. Upon oxidation for 30 min the photoluminescence peak wavelength blueshifts by more than 200 nm. This blueshift is attributed to a quantum size effect in which a reduction of the average nanocrystal size leads to emission at shorter wavelengths. The room temperature luminescence lifetime measured at 700 nm increases from 12 µs for the unoxidized film to 43 µs for the film that was oxidized for 29 min

    Influence of oxide film surface morphology and thickness on the properties of gas sensitive nanostructure sensor

    Get PDF
    In this study, the gas sensitive metal-oxide semiconductor (MOS) nanostructure sensors based on Ni thin film have been fabricated. The influences of SiO2 film surface morphology and thickness on the response (R%) and electrical properties of the sensors have been investigated at 150 °C. The surface morphology of the SiO2 film has been characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The C-V curves of the MOS nanostructure sensors in pure nitrogen and 2 % hydrogen have been reported as well. For the SiO2 film thicknesses of 14, 65 and 74 nm the measured flat-band voltages (VFB) are 0.7, 1.5 and 2 V, respectively. The responses of different sensors in 2% hydrogen for SiO2 film thicknesses of 14 and 74 nm are 84% and 32%, respectively. The MOS nanostructure sensors exhibited good response to the hydrogen gas, with excellent sensitivity. The MOS nanostructure sensor based on Ni thin film and SiO2 film thickness of 14 nm shows high response and sensitivity
    corecore